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1. Introduction
A thin multilayer plate made of linearly elastic homogeneous isotropic layers is studied. The

Young moduli ratio of hard and soft layers is supposed to be large. The generalized Timoshenko–
Reissner (TR) model is used to describe the bending and the free vibrations of this plate. A rectangular
plate with simply supported edges is studied. Then this model is applied to a multilayer graphite
nano-plate consisting of graphene layers. The expressions for the bending and for the transversal
shear stiffness are proposed. As a result, the explicit formulae for the bending amplitude and for the
natural bending frequencies of the nano-plate are delivered.

The 2D model for a transversely isotropic heterogeneous plate of the second-order accuracy
with respect to the small thickness parameter µ = h/L is delivered in [1]. It occurs that compared
with the classic Kirchhoff–Love (KL) model, the terms including the transversal shear are the main
additional terms. That is why in [2] the generalized (TR) model for a multilayer plate is proposed.
This model can be applied to multilayer plates with a great difference in stiffness between the Young
moduli of hard and soft layers. This result allows us to apply this model to a graphite plate in which the
graphene layers are hard, and Van-der-Waals forces acting between the graphene layers are modeled
by soft isotropic layers.

2. Bending deformation and vibrations of a multilayer plate
To describe the bending deformation the equation [2]
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based on the TR model for a transversely isotropic homogeneous plate, which is equivalent to a
multilayer plate with the layer thicknesses hk, is used, where
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Here D is the bending stiffness, a is the neutral layer position, Γ is the transversal shear stiffness,
F3(x, y) is the external transversal force density, 0 ≤ z ≤ h =

∑
hk is the plate thickness, the

functions E0(z), G13(z) are the piece-wise constant functions in z.
For a rectangular plate 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly with the simply supported edges under action

of a harmonic external load F3(x, y) = F 0
3 sin rxx sin ryy, rx = πx/Lx, ry = πx/Ly, the deflection

w(x, y) also is harmonic
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where wb and ws are the bending and the shear parts of deflection, respectively [3].



We rewrite Eq. (3) as w0 = wb(1 + g), where g = r2D/Γ is the shear parameter. Taking
into account that D/Γ = h2ξ, we get g = µ2ξ, where µ = rh is the small thickness parameter. If
the Young moduli of layers are close to each other, then ξ ∼ 1 and g ≪ 1, and the value g may be
neglected. In this case the KL model may be used. If ξ ≫ 1 then the shear deformations become
essential and Eq. (3) is to be used while g ∼ 1. If g ≫ 1, Eq. (3) is not appropriate.

At the case of free vibrations with frequency ω we take F3 = ρω2w, and Eq. (3) gives the
approximate expression for the first natural frequency

ω2 = Dr4/(ρ(1 + g)).(4)

Eq. (4) is acceptable also at g ∼ 1.

3. Model of the multilayer nano-plate bending
Let a graphite plate consist of n + 1 graphene layers. We model each layer as a thin isotropic

plate with the extension stiffness K0 and with the bending stiffness D0 [4]. We model the inter-
mediate layers of thicknesses h0 between graphene layers as isotropic elastic layers with the small
stiffness. Then we get a multilayer plate, and we model it as an one-layered homogeneous TR plate
(see Section 2). We calculate the equivalent stiffness D and Γ by Eqs. (2).

At an calculation of integrals in Eqs. (2) we neglect the thickness of graphene layers compared
with h0 (then h = nh0), neglect the shear compliance of graphene layers compared with the shear
compliance of intermediate layers, and also neglect the extension stiffness of intermediate layers.
Then E0(z) = K0

∑n
k=0 δ(z−kh0), where δ(z) is the Dirac’s delta-function. We obtain the equivalent

stiffness as:
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Here G13 is the transversal shear stiffness of the intermediate layers. In the formula for the bending
stiffness D the first summand is much larger than the second one and it is to be omitted. Namely, for
the multilayer nano-plate we ought to ignore the bending stiffness of separate layers.

Now we may use Eqs. (3) and (4) to calculate the deflection and the frequency of free vibrations
of a graphite nano-plate. Numerical examples are given.

4. Conclusions
The formula for the transversal shear stiffness Γ is the main result. The proposed TR model

may have a wide field of applications for ordinary multilayer plates. For nano-plates this model has
rather a theoretical interest, but its generalization for multilayer carbon nanotubes is promising.
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