ANTIPLANE STRAIN (SHEAR) OF ORTHOTROPIC NON-HOMOGENEOUS PRISMATIC SHELL-LIKE BODIES

N. Chinchaladze¹ and G. Jaiani¹

¹I. Vekua Institute of Applied Mathematics & Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University, Tbilisi 0186, 2 University str., Georgia

1. Abstract

Antiplane strain (shear) of an orthotropic non-homogeneous prismatic shell-like body is considered when the shear modulus depending on the body projection (i.e., on a domain lying in the plane of interest) variables may vanish either on a part or on the entire boundary of the projection. The dependence of well-posedeness of boundary conditions (BCs) on the character of vanishing the shear modulus is studied.

2. Introduction

The antiplane shear (strain) is a special state of strain in a body. This state is achived when the displacements in the body are zero in the plane of interest but nonzero in the direction perpendicular to the plane. If the plane Ox_1x_2 of the rectangular Cartesian frame $Ox_1x_2x_3$ is the plane of interest, then

(1)
$$u_{\alpha}(x_1, x_2, x_3) \equiv 0, \quad \alpha = 1, 2; \quad u_3(x_1, x_2, x_3) = u_3(x_1, x_2), \quad (x_1, x_2) \in \omega,$$

where u_i , i = 1, 2, 3, are the displacements, ω is a projection of the prismatic shell-like body Ω on the plane Ox_1x_2 , correspondingly $\partial \omega$ is a projection of the lateral boundary S of Ω . The relations (1) mean that all the sections of the body parallel to the plane of interest Ox_1x_2 will be bent as its section by the plane Ox_1x_2 . Ω may have either Lipschitz or non-Lipschitz boundary, ω has a Lipschitz boundary. Below Einstein's summation convention is used. A bar under one of repeated indices means that this convention is not use.

For an orthotropic linear elastic material the strain e_{ij} and stress X_{ij} tensors that result from a state of antiplane shear can be expressed as

(2)
$$e_{\alpha\beta} \equiv 0, \quad \alpha, \beta = 1, 2; \quad e_{33} \equiv 0; \quad e_{\alpha3} = \frac{1}{2}u_{3,\alpha}(x_1, x_2) \neq 0, \quad \alpha = 1, 2,$$

where the comma after the index means differentiation with respect to the variable corresponding to the index indicated after the comma, and

(3)
$$\begin{aligned} X_{\alpha\beta} &\equiv 0, \ \alpha, \beta = 1, 2; \ X_{33} &\equiv 0; \\ X_{3\alpha} &= X_{\alpha3} = \mu_{\underline{\alpha}}(x_1, x_2) u_{3,\alpha}(x_1, x_2), \ \alpha = 1, 2, \end{aligned}$$

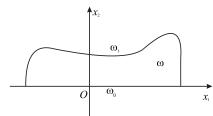
since for non-homogeneous body with the shear moduli $\mu_{\alpha}(x_1, x_2)$, $\alpha = 1, 2$, the Hooke's law looks like

(4)
$$X_{\alpha 3} = 2\mu_{\underline{\alpha}} e_{\alpha 3} = \mu(x_1, x_2) u_{3,\alpha}(x_1, x_2), \ \alpha = 1, 2.$$

From (3), (4) it follows that at any point $x := (x_1, x_2, x_3)$ stress vector components

(5)
$$X_{n\alpha} = X_{j\alpha}n_j = X_{3\alpha}n_3 = \mu_{\underline{\alpha}}u_{3,\alpha}n_3, \quad \alpha = 1, 2;$$

(6)
$$X_{n3} = X_{j3}n_j = X_{\alpha 3}n_\alpha = \sum_{\alpha=1}^{3} \mu_\alpha u_{3,\alpha}n_\alpha,$$



where n is the unit normal of a surface element passing through x. The equilibrium equations reduce to

$$\Phi_{\alpha} \equiv 0, \quad \alpha = 1, 2, \qquad X_{\alpha 3, \alpha} + \Phi_3 = 0,$$

where Φ_i , i = 1, 2, 3, are the components of the volume force. Let $u_3 \in C^2(\omega)$, $\mu \in C^1(\omega)$, and $\Psi \in C(\overline{\omega})$. Substituting (3) into (7) we get only one governing equation

Figure 1. A finite ω

(8)
$$\sum_{\alpha=1}^{2} (\mu_{\alpha}(x_1, x_2) u_{3,\alpha}(x_1, x_2))_{,\alpha} + \Phi_3(x_1, x_2) = 0, \quad (x_1, x_2) \in \omega.$$

(7)

In the dynamical case we will have

(9)
$$\sum_{\alpha=1}^{2} (\mu_{\alpha}(x_{1}, x_{2}) u_{3,\alpha}(x_{1}, x_{2}, t))_{,\alpha} + \Phi_{3}(x_{1}, x_{2}, t) = \rho \ddot{u}_{3}(x_{1}, x_{2}, t), \ (x_{1}, x_{2}) \in \omega, \ t \ge t_{0}.$$

The aim of the present paper is to investigate boundary value problems (BVPs) and initial BVPs (IBVP) for the symmetric prismatic shell-like body Ω (see [1,2]), in particular, of the constant thickness (which may also be infinite) when the shear moduli may vanish either on a part or on the entire boundary of the projection ω on the plane of interest Ox_1x_2 . The same problem in isotropic case is investigated in [3,4], where, correspondingly, static and dynamicaal problems are considered.

3. Investigation of BVPs and IBVPs

Let

$$\mu_{\alpha}(x_1, x_2) = \mu_0^{\alpha} x_2^{\kappa_{\alpha}}, \quad \mu_0^{\alpha} = \text{const} > 0, \quad \kappa_{\alpha} \ge 0, \quad \alpha = 1, 2, \quad (x_1, x_2) \in \omega.$$

In this case equation (9) has the form

$$\mu_0^1 x_2^{\kappa_1} u_{3,11} + \mu_0^2 x_2^{\kappa_2} u_{3,22} + \kappa_2 \mu_0^2 x_2^{\kappa_2 - 1} u_{3,2} + \Phi_3(x_1, x_2) = \rho \ddot{u}_3(x_1, x_2, t) + \rho \ddot{u}_3(x_1, x_2, t$$

When ω is either the upper half-plane $x_2 \ge 0$ or a finite domain lying in the upper half-plane adjacent to x_1 -axis (see Figure 1) and the shear modulus is a power function with respect to x_2 vanishing at a part of boundary ω_0 , where $x_2 = 0$, well-posedness of the basic BVPs and IBVPs are investigated. On ω_1 the shear moduli $\mu_{\alpha}(x_1, x_2) > 0$. Vanishing the shear moduli on ω_0 influences on setting BCs which, in general, become non-classical, while it does not influence on setting initial conditions. Namely, for $\kappa_2 < 1$, u_3 should be prescribed on the entire boundary $\partial \omega = \omega_0 \cup \omega_1$, while for $\kappa_2 \ge 1$, it should be prescribed only on ω_1 (ω_0 should be free of BC) for well-posedness of BVP and IBVP in displacements.

In the case $\mu_{\alpha}(x_1, x_2) = \mu_{\alpha}(x_2)$, assuming $u_3 = u_3(x_2, t)$, a vibration of the body is considered.

4. References

- [1] I. Vekua (1985). *Shell Theory: General Methods of Construction*. Pitman Advanced Publishing Program, Boston-London-Melbourne, p. 491.
- [2] G. Jaiani (2011). *Cusped Shell-like Structures*. Springer Briefs in Applied Science and Technology, Springer-Heidelberg-Dordrecht-London-New York, p. 84.
- [3] G. Jaiani (2015). Antiplane strain (shear) of isotropic non-homogeneous prismatic shell-like bodies, *Bull. TICMI*, **19**, **2**, 40-54.
- [4] N. Chinchaladze (2015). On some dynamical problems of the antiplane strain (shear) of isotropic non-homogeneous prismatic shell-like bodies, *Bull. TICMI*, **19**, **2**, 55-65.