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1. Introduction
Several approaches to numerical modeling of heterogeneous materials can be found in the lit-

erature. Among them, there is a group of discretization-based homogenization methods. They are
used in the case when we cannot afford the mesh fine enough to account for the heterogeneities of the
material. Instead of that the finest possible mesh is generated and effective stiffness matrices are com-
puted for its elements. This mesh, referring to the macro level, is called the coarse one. Independent
fine meshes that appropriately resolve material heterogeneity are generated for every coarse element.

In this paper we present briefly two techniques used for evaluation of the afore-mentioned
matrices- local numerical and multiscale (multigrid) homogenization. We enhance them using hp-
adaptive FEM at both micro and macro level (see e.g. [1, 2]).

2. Local numerical homogenization
Detailed description of local numerical homogenization can be found in [3, 4]. Authors used

the method originally for lattice models. However, it is general and subsequently it was used for
non-linear continuum mechanics problems [5].

In the further discussion we naturally focus on a single coarse element. Subsequently, we refine
it in order to comply with the micro structure. Our problem is to find such a coarse element stiffness
matrix that minimizes the squared norm of the difference between fine and coarse mesh solutions.
Mathematical formulation is as follows:

Given symmetric fine mesh element stiffness matrices assembled intoKh, a non-zero fine mesh
load vector fh, interpolation matrix A, positive-definite symmetric weight matrix B, dimensionless
small parameter ε > 0, find a symmetric matrix K†

H (pseudoinverse of a coarse element stiffness
matrixKH) minimizing E, where
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and ‖x‖2 =
√
trace(xTx) denotes Euclidean norm, ‖x‖B =

√
trace(xTBx) denotes Euclidean

norm weighted withB, ‖X‖F,B =
√
trace(XTBX) denotes Frobenius norm weighted withB.

x andX are arbitrary column vector and arbitrary matrix, respectively.

3. Multiscale homogenization
Multiscale FEM (MsFEM) [7] is equivalent to multigrid homogenization [6, 8]. Inter-grid oper-

ators between coarse and fine mesh shape functions can be found by solving the problem formulated
in a weak form as:
Find Φ(x) ∈ V0 + Φ̂ such that

(2)
∫

Ω

σ(Φ) : ε(v)dΩ =

∫
Ω

v ·Reg [divσ(Ψ)] dΩ ∀v ∈ V0



where ψ is a coarse mesh vector valued shape function, Φ is its interpolant and Reg denotes regular
part of the derivative. Ω stands for the coarse element domain.

Solution to 2 obtained for every vector valued shape function ψ constitutes the interpolation
operator IM×N , where M is the number of macro element degrees of freedom and N denotes the
number of fine mesh degrees of freedom.

Assuming that restriction operator R = IT one computes KH = ITKhI and fH = ITfh,
where KH denotes effective coarse element stiffness matrix and fH is coarse element load vector.
Kh and fh stand for fine mesh stiffness matrix and load vector, respectively.

4. Final remarks
General algorithms of the afore presented methods are very similar. The only difference is the

way of effective stiffness matrices computation. Thorough comparison of both methods will be pre-
sented during the conference. Numerical results concerning Fichera corner with various distribution
of inclusions will be shown. Large reduction of degrees of freedom was obtained without reasonable
additional modeling error. The preliminary tests indicate that efficiency of the MsFEM is superior in
comparison with the other approach.

Selected numerical implementation aspects and future plans concerning both homogenization
methods will be also presented during the conference.
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