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1. Mesh-dependence of local approach 

The problem of crack growing in creep condition has been found as very promising 

application of Continuum Damage Mechanics (CDM). Introducing damage parameter as new state 

variable it is possible to define damage zone as a region with damage parameter equals to its critical 

value. This damage zone in some circumstances can be treated as model of crack, and spread of this 

zone as a crack growth. Using typical Kachanov-Rabotnov equations for modeling of damage 

development and strains coupled with damage it is possible to obtain reasonable solution of 

complex problem related to creep crack growth (e.g. [1]). 

However, such approach, known as local approach to fracture, encounters many problems. 

These problems are related to the Kachanov-Rabotnov equations themselves and to application of 

Finite Element Method (FEM) to solve them. The Kachanov equation: 
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where ω is damage parameter, σ is stress, C, m are material constants, introduces the rate of damage 

tending to infinity for damage parameter approaching its critical value of 1. It also yields the width 

of the crack to be zero. In FEM solution, which is mesh depended, the crack width is always of the 

minimum element size, and unlimited stress redistribution leads to strong strain localization (c.f. 

[2]). Not only size but also type and shape of elements are essential, as the path of developing crack 

depends upon them (c.f. [3]). 

2. Methods of regularization, nonlocal damage theory 

There are known methods of regularization of mesh dependency (see e.g. [4,5]). One of the 

simplest is limitation of mesh size, where the mesh size is a material parameter. The development of 

this method led to nonlocal approach of fracture to arise, where the solution does not depend on the 

values of state variables at the local point, but also on its neighborhood. The grid method developed 

in e.g. [6,7,8] is an example of this approach.  

The size of the grid is strictly connected with material. Hall and Hayhurst [6] proposed for 

brittle fracture of polycrystalline metals that the most important material parameter is a grain size 

and the grid size should be equal to six grain diameters. On the other side Bilby et al. [7] for ductile 

fracture set the grid size to the spacing of the most significant second phase particles, as these 

particles are responsible for initiation of ductile crack. The variables responsible for damage growth 

are averaged inside cells of this grid and the nonlocal damage is calculated on the base of this 

averaged values. Next the damage parameter is spread over relevant integration points. Such a grid 

is called material grid, here, to distinguish it with finite element (FE) and other grids. 

3. Nonlocal approach to CAFE methodology 

The Cellular Automata (CA) model developed by author (see e.g. [9]) does not use Kachanov 

equation (1) for damage development. Instead discrete CA rule is responsible for it. Thus some of 

the problems connected with infinite growth of damage rate is irrelevant for this model. But another 



problems due to stress redistribution and damage localization are similar as for other local method. 

The CA methodology is strictly connected with finite element grid, as separate CA processes are 

run in every integration point. The output from CA is value of damage parameter and it is used in 

constitutive equation solved by FEM. The resulting strain is, in turn, the input for CA process. They 

both CA and FE contribute together to CAFE model. The size of finite element attributed to size of 

Representative Volume Element (RVE) is treated as a material property.  

The present model separate the finite element grid from material grid according to nonlocal 

approach methodology. The size of the cell of material grid is still connected with the size of RVE 

but the FE grid can be refined for better approximation of strain and stress fields. The strain, which 

is input for CA process, now is calculated as an average value over volume of material grid cell 

according to equation (c.f. [8]): 
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εkl are strain tensor elements, n is the number of integration points belonging to material grid cell, 

i is index of such point, ∆Vi is the volume associated with integration point and wi is weighting 

function. The damage value obtained in CA process is then spread over integration points connected 

with given material grid cell. 

4. Results and conclusion 

Using described method the simulation of creep crack growth was performed. The rectangular 

initially cracked copper specimen was analyzed for two cases of external and internal crack. FE 

meshes were diversified whereas material grid was the same for all calculations. Times to first 

element failure (crack growth initiation) and crack paths were compared.  

One of the aim of CA model of damage development was to introduce the material 

inhomogeneity into the examined specimen. Then the ambiguity of the model response had two 

different sources: first connected with intended model randomness and second due to mesh and 

finite element dependency. The nonlocal approach allows to eliminate the spurious solutions and to 

examine the influence of initial material inhomogeneity on the process of creep crack growth. 
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