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1. Non-local materials

Non-local materials were already studied in the 1960s by several authors (for example [1]) as
a part of continuun mechanics. When material instability gained more interest, non-local behaviour
appeared again [2], because instability zones exhibited singular properties for local constitutive equa-
tions. Such works used the gradient of strain tensors to include non-locality into the constitutive
equation
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2. Gradient materials and internal length

Most gradient theories concentrate on the second gradient, let the constitutive equation be in
rate form
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then the set of the basic equations of continua consists of (2) and the equation of motion together with
the kinematic equation
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By transforming them into the velocity field and using new variables
Y1 =0, Y2 =70
a dynamical system
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is obtained, where
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Its characterisic equation for \ reads
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The critical eigenfunction of (5) at the loss of stability (¢; = ¢ierr < 0) 1S
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can be identified as internal length.

However, by comparing (1) and (2) several question arise: is there a Taylor expansion for
€? Why the first order gradient is missing? Anyway, for the basic eqations, even at the simplest
¢ = ¢3 = ( constitutive equation, there is a gradient dependent term
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3. Fractional calculus

Following the idea of [3] (8) can be generalized to fractional derivatives
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where “D¢ u(x) and “D¢_u(zx) are a-th fractional derivatives with respect to z for a rod of lenght
L — a, thus by evaluating them
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Here (and consequently in (9)) non-locality is present as forward and backward integrals along
the rod.

Moreover, the inclusion of non-locality by using fractional calculus solves an other problem of
conventional gradient theories. In dynamic problems (and stability is always a dynamic problem) the
existence of wave solution is required for the basic equations. Such condition excludes several forms
for constitutive equations [4], including that one when the only terms with second derivative is €.
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