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1. Introduction
Recently some new constitutive relations have been proposed to study the behaviour of elastic

bodies [1, 2]. One of such constitutive relations is of the form [2]

(1) F(T,B) = 0,

where T is the Cauchy stress tensor, B = FFT is the left Cauchy-Green strain tensor and F is the
deformation gradient. In general from (1) it is not possible to express the stresses as functions of
the strains and vice-versa. These kind of constitutive relations cannot be classified as either Cauchy
or Green elastic bodies. An interesting subclass of (1) can be found assuming that |∇u| ∼ O(δ),
where δ ≪ 1 and where u is the displacement field. In such a case since B ≈ I + 2ε (where
ε = 1

2
(∇u+∇uT) is the linearized strain tensor) from (1) we obtain

(2) ε = f(T).

The relations (1) and (2) could have many potential uses in rock mechanics, fracture mechanics and
biomechanics [3, 4].

In the present work we study a possible extension of the above implicit constitutive theories for
the case of modelling the behaviour of a thermo-elastic body.

2. Implicit constitutive relations
In this work we use the second Piola-Kirchhoff stress tensor S and the Lagrange strain tensor

E, which are defined as S = JF−1TF−T, E = 1
2
(FTF− I), in order to propose implicit constitutive

relations. We consider the following implicit relation for a thermo-elastic body

(3) G(S,E, θ) = 0,

where θ is the temperature of the body. In the case G is an isotropic relation (3) becomes

(4)
α0I+α1S+α2S

2+α3E+α4E
2+α5(ES+SE)+α6(E

2S+SE2)+α7(S
2E+ES2)+α8(S

2E2+E2S2) = 0,

where αi, i = 0, 1, 2, ..., 8 are scalar functions that depend on θ and the invariants defined from S and
E. In the special case that |∇u| ∼ O(δ), δ ≪ 1 we have E ≈ ε and S ≈ T and from (4) we obtain a
constitutive equation of the form

(5) ε = β0I+ β1T+ β2T
2,

where βj , j = 0, 1, 2 are scalar functions that depend on θ and the three independent invariants of T.
An additional relation is needed, which is the vector implicit relation

(6) h(T, θ,∇θ,q, q̇) = 0,

where q is the heat flux. In the case h is an isotropic vector function we have (see [6])

(7) ξ0∇θ + ξ1T∇θ + ξ2T
2∇θ + ξ3q+ ξ4Tq+ ξ5T

2q+ ξ6q̇+ ξ7Tq̇+ ξ8T
2q̇ = 0,

where the scalar functions ξi, i = 0, 1, ..., 8 depend on θ and the invariants formed with T, ∇θ, q
and q̇. This relation would be a generalization of the Fourier’s model for heat transfer presented, for
example, in [5].



3. Incompressibility constraint
If |∇u| ∼ O(δ), δ ≪ 1 the incompressibility constraint is trε = g(θ), where we have assumed

that the volume of the body can be affected by changes in the temperature, which is represented by
the function g(θ). If we further assume that there exists a scalar function Π = Π(I1, I2, I3, θ), where
I1 = trT, I2 = 1

2
tr(T2), I3 = 1

3
tr(T3), and where ε = ∂Π

∂T
, we have βi−1 = ∂Π

∂Ii
, i = 1, 2, 3, and the

constraint becomes the first order partial differential equation for Π

(8) 3
∂Π

∂I1
+ I1

∂Π

∂I2
+ 2I2

∂Π

∂I3
= g(θ).

The solution of this equation is of the form (see [6]) Π(I1, I2, I3, θ) = g(θ) I1
3
+ Π̄(Ī1, Ī2, θ), where

we have defined Ī1 = I1 − I21
6

, and Ī2 = I3 − 2
3
I1I2 +

2
27
I31 .

4. Boundary value problem
The displacement field u, the Cauchy stress tensor T, the temperature θ and the heat flux q

(where in total we have 13 components) have to satisfy the equation of motion

(9) divT+ ρb = ρü,

the constitutive relations 5 and 7 and the first law of thermodynamics

(10) ρϵ̇ = tr(Tε̇) + divq+ ρr,

where ϵ is the internal energy of the body and r is the rate of heat per unit of mass generated by the
body. In total we would have 13 equations.

5. Further remarks
Regarding the second law of thermodynamics, in [6] there will be a study about how to impose

restrictions on these constitutive relations such that such law is obeyed. In the same communication
several boundary value problems will be solved, to see the potential uses of the theories presented in
this work.
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