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1. Introduction
When a material experiences extreme loading it initially deforms uniformly and from some

point strains localize in a narrow zone while the rest of the material unloads. The phenomenon
called strain localization, which is a precursor of material fracture, can have three sources: material
degradation, geometrical softening or temperature-induced softening. In this paper special attention
is focused on the numerical analysis of thermal softening; however the geometrical and material
instabilities are approached simultaneously. The thermal softening is understood here as a reduction
of the yield strength due to the increase of temperature. It can take various forms, see e.g. [1] or
[2], and it manifests itself as a reduction of the total yield strength, hardening function or individual
material parameters.

2. Model description
In the presented large strain model a full thermomechanical coupling is adopted, i.e. the model

includes thermal expansion, dependence of material parameters on temperature (degradation of Young
modulus and yield strength), plastic self-heating and the influence of deformation on the heat flux.
Non-stationary Fourier heat transport through the isotropic material is considered.

The analysed thermomechanical model is based on the multiplicative decomposition of the
deformation gradient F = FθFeFp, where Fθ = exp[αT (T − T0)]I is a part related to thermal
expansion (αT denotes the coefficient of linear thermal expansion, I is the second order identity
tensor, T0 and T are the reference and absolute temperatures respectively), Fe is an elastic contribution
and Fp involves the irreversible (plastic) deformation. The state of the material is described by the
Helmholtz free energy potential that is assumed in the following decoupled form [1]

(1) ψ(be, T, γ) = ψe(be) + ψθ(T ) + ψp(γ)

which distinguishes the elastic, thermal and plastic parts. The quantity be = Fe(Fe)T denotes the
elastic left Cauchy-Green tensor and γ is a scalar plastic strain measure.

The yield function that governs the plastic regime is assumed in the following form

(2) Fp(τ , γ, T ) = f(τ )−
√

2/3σy(γ, T ) ≤ 0

The equivalent stress function f(τ ) is a Kirchhoff stress measure (e.g. Huber-Mises-Hencky) and
σy(γ, T ) denotes the yield stregth which includes strain hardening, thermal softening and, optionally,
a measure of degradation of plastic properties as in [3]. If the last phenomenon is incorporated in the
model, the description is enhanced with the gradient regularization presented in [3].
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The yield strength functions with thermal softening incorporated are for simplicity limited to
linear temperature-dependence and can for instance have one of the following two forms:

(3) σy(γ, T ) =
[
Y0 +Hγ + (Y∞ − Y0)

(
1− e−δγ

)]
[1−HT (T − T0)]

(4) σy(γ, T ) = Y0 +H(T )γ + (Y∞(T )− Y0)
(
1− e−δγ

)
In the above equations Y∞(T ) = Y∞ [1−HT1(T − T0)], H(T ) = H [1−HT2(T − T0)], moreover
Y0, H , Y∞, δ, HT , HT1 and HT2 are material parameters.

3. Implementation and numerical tests
The numerical simulations are performed using symbolic-numerical packages Ace that work in

Wolfram Mathematica environment. The user-supplied subroutines are developed for the obtained
two- or three-field finite element formulation. A series of computational tests for an elongated plate
in plane strain conditions are performed. Special attention is focused on the influence of the adopted
form of thermal softening on simulation results. Moreover, different boundary conditions for thermal
field are taken into account (convection, insulation) and different finite elements are tested. This
last aspect is illustrated in Figure 1 where deformed meshes with the plastic strain distribution are
depicted for standard elements with linear interpolation of all fields and for locking-free elements
with F-bar modification, see [4]. The results reveal that the material response can differ strongly not
only depending on the specific form of material functions (e.g. defining thermal softening), but also
depending on the finite element quality.

Figure 1. Deformed meshes with temperature distribution for elements without F-bar (top) and with F-bar
(bottom) – nonadiabatic local thermoplasticity with material and thermal softening as in Eq. (3)
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